
PERFORMANCE AUTOTUNING WITH ORIO 
 

Azamat Mametjanov 
Mathematics and Computer Science Division 

Argonne National Laboratory 
 

INTRODUCTION 
A program is an algorithm that operates on structured 
data. An algorithm is implemented in a structured 
programming language. The grammatical structure of a 
programming language can be used to treat programs as 
data, where a meta-program transforms other, first-order 
programs. Compilers (the best-known application of 
meta-programming) transform programs/data in a high-
level (easy to develop) source language to programs/data 
in a low-level (machine-executable) target language. The 
primary goal of compilation is to create an executable for 
a particular instruction set architecture: e.g. VLIW for 
embedded processors, CISC for Intel’s x86 processors 
and RISC for IBM’s PowerPC processors. Other goals of 
meta-programming are to (1) optimize code for 
performance and/or energy, and (2) refactor code for 
resiliency, maintainability and readability. While 
compilers are good at program translation, they are 
notoriously bad at optimization and refactoring 
objectives. Active research and development is underway 
to create optimizing compilers and refactoring tools that 
assist programmers in quickly developing functionally 
correct, fast and resilient codes. 
 
Prototyping and development of a scientific application 
requires a deep component stack. It typically includes 
design choices on hardware architecture, OS, 
programming language, compiler and libraries. While 
libraries may provide significant functional capabilities 
for an application, they may in turn rely on other libraries 
and increase the depth of dependencies (e.g. BLAS, 
NetCDF, MPI). 
 
Having chosen a particular component stack, an 
application can become a monolithic “stove-pipe” that is 
vulnerable to configuration changes such as version 
updates. More importantly, the choices of components 
can lock-in the application making it hard to port to other 
component configurations. 
 
While some tool suites intend to provide portability across 
platforms (GNU, PGI, LLVM), some platforms require an 
application to use a specific tool chain: e.g. IBM Blue 
Gene P/Q, Cray XT/XE/XK, Intel MIC systems. The 
heterogeneity that is induced by multiple choices at each 
layer of a component stack not only creates compatibility 
issues, which can be handled by configuration tools, but 
also performance and refactoring variability, which have 
not been systematically addressed. 
 

METHOD 
The goal of autotuning is to automatically tune the 
performance of a code for a given platform configuration. 
Because the targeted platforms can be heterogeneous, the 
accompanying benefit of autotuning is performance 
portability. This is accomplished by annotating existing 
code with performance directives in the form of source 
code comments. The annotation-based approach does not 
modify the semantics of a given program, which acts as a 
reference implementation that can be compiled and 
executed to obtain reference results. The annotated code 
is transformed according to performance directives, 
compiled and executed to obtain its performance metrics 
and outputs for comparison with reference results. 
Depending on the number of parameter variations within 
the directives, a number of resultant code variants are 
compared and the highest performing variant is selected 
as the result of autotuning. 
 

RESULTS 
We have extended Orio’s annotation-based approach to 
generate CUDA GPU code from an existing C code. 
Performance tuning parameters include number of threads 
in a block, number of blocks in a grid of CUDA threads, 
number of asynchronous streams, size of L1 cache and 
loop unroll factor among others. The result is an auto-
generated CUDA code that performs better than hand-
tuned cuSPARSE library code. Figure 1 illustrates how 
the autotuned code consistently outperforms the library 
code [1]. 

 
Figure 1: Performance (lower execution time is better) of 
autotuned vs. special-purpose CUDA GPU library code 
on sparse matrices from 5- and 7-point stencils on grids of 
various sizes. 
 

REFERENCES 
1. A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris. 
Autotuning Stencil-Based Computations on GPUs. In 
Proceedings of IEEE International Conference on Cluster 
Computing (Cluster’12), September 2012. 


